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ABSTRACT 

A generalization of the two main probability models used to describe runs of wet days or of dry days is given. 
The new model depends on only two parameters and is shown t o  fit a large proportion of available sets of data. 

1. INTRODUCTION 

For some time it has been known that sequences of wet 
(or of dry) days exhibit persistence and do not conform 
to a constant probability (Bernoulli trials) model, where- 
by the probability of a wet day is independent of the 
number of immediately preceding wet or dry days. For 
example see Newnham (1916), the discussion by Brooks 
and Carruthers (1953) in chapter 16 of their book, and 
other references on this theme by Weiss (1964). Various 
alternative models have been suggested, the most popular 
of which has been a simple Markov model (see, for ex- 
ample, Chatfield 1966, Cooke 1953, Feyerherm and Bark 
1965, Gabriel and Neumann 1962, Longley 1953, Weiss 
1964). Certain models derived from particular continuous- 
time models were considered by Green (1964, 1965, 1967) 
and shown to be equivalent to the simple Markov model 
in most cases. Williams (1952) successfully fitted a 
logarithmic series to runs of wet days and runs of dry 
days at Harpenden, England. Cooke (1953) fitted the 
same type of series to rainfall records at  Moncton, New 
Brunswick. Also Brooks and Carruthers (1953) put- 
forward a modification of the Markov model whereby 
the probability of a day following a wet day is a constant 
from the third wet day onward, but this is different from 
the probability that the second day is wet. They success- 
fully fitted this model to Newnham's data (1916) on wet 
days at Kew. 

Wiser (1965) has also exmined several modifications 
of the simple Markov model (using a three-urn illustra- 
tion) and has shown how these fit more sets of data than 
the unmodified form. We feel that the new model proposed 
in this paper is simpler than Wiser's modifications, and it 
certainly has a high success rate in application to different 
sets of data. 

9. RELATION OF THE NEW MODEL 
TO SOME EARLIER MODELS 

The probabilities of runs of 1, 2, . . . , T ,  . . . days of 
wet (or dry) days according to certain models are con- 
secutively proportional to the quantities shown (where 
p and a are parameters) : 

Model l-Williams' log series, p, $/2, . . . , pr/r, . . . , 
with normalizing constant - l/log(l -p). 

Model 2-Markov chain, p, @, . . . , pr, . . . , with 
normalizing constant (1 - p)/p. 

Model 3-new modified log model, q/(l+a), q2/(2+a), 
. . . , q?/(r+a), . . . , where a is a constant between 0 
and infinity and the normalizing constant,. c,  such that 
cZpr/(r+a) = 1, is easily computable. 

Incidentally, the Bernoulli model, like the Markov 
model, also has run probabilities which form a geometric 
series, but in this case the probability of a day being wet 
is independent of the states of the previous days, whereas 
in the Markov model the probability of a wet day does 
depend on the state of the preceding day. 

Letting Wrepresent a wet day, D a dry day, and P(AlB) 
the probability of A given B, we have the probability of 
a run of r wet days (any r, the first wet day being given) 
is P(Wr-'DIW>=P(WIw).P(W]W2) , . . P(WIW-l> X 
P(D( W) . For the Bernoulli model, 

P (Wl-9 I w) =P (w> '-'P (D) . 
For model 2, 

P ( W - ' D  I W )  = P ( WI W)r-'P (Dl W )  . 

In models 1 and 3, these probabilities are more simply 
and directly defined as functions of r such that 

P(W-'nlW)=( pr/(r+a), for some p, T (model 3). 
pr/r, for some p (model 1) 

The new model 3 includes models 1 and 2, by a taking 
the values 0 and O D ,  respectively. For a greater than 1, 
it is more convenient, for computational purposes, to 
write the model 3 probabilities as being proportional to 
q/<l +all, @/(I +2ad, . . . , p W  +rad, . . . . Mere, QI 
is the reciprocal of a as used above, and so, for a greater 
than 1, al lies between 0 and 1. 

3. THE GOODNESS OF FIT OF DATA TO MODELS 
1, 9, AND 3 

Models 1 and 2 have been shown to fit a large proportion 
of the appropriate sets of data available, as demonstrated 
by table 1. The first 11 places in this table, down to Fort 
Worth, were discussed by Weiss (1964) and also p&ly 
by Green (1965) and Wiser (1965). 
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TABLE 1.-Sets of data jitting models 1, 2, and 3 (according to the 2 
test at 6 percent level) 

- 
Set of data Model1 Model2 Neither Model 3 Q* 9’ 

1 nor 2 

1 Montwuris Wet 
(Besson 1924) 

J J 0.3 0.79 

2 SanFrancisco Dry i J 1.25 0.91 
3 (Jorgensen 1949) Wet i J 2.5 0.72 

4 Harpenden Dry J 
5 (Williams 1952) Wet J J 0.9 0.795 

6 Montreal Dry i 
7 (Longley 1953) Wet J 

8 Moncton Dry 
9 (Cooke1953) Wet 

d X m 0.725 
J X 0.24 0.518 

10 Stormarea1 Dura. i 
11 (Weiss 1964) Int. 4 

12 Stonnares11 Dura. J J 2.8 0.74 
13 (Weiss 1964) Int. d m 0.42 

14 Stom area111 Dura. J d 10 0.72 
15 (Weiss1964) Int. J (J? )  00 0.438 

16 Storm areaIV Dura. J 
17 (Weis 1964) Int. v’ 

18 KansasCity Dry J 
19 (Weiss 1964) Wet J 

20 Fort Worth Dry d 
21 (Weiss1964) Wet J 

23 (Green, new data) Wet J J 0.9 0.689 
22 March Dry J J O  0.868 

24 Aberdeen Dry J J 0.28 0.747 
25 (Newnham 1916) Wet d X 5.6 0.770 

26 Kew Dry J v’ 0.09 0.83 
27 (Newnham 1916) Wet J J 0.93 0.75 

28 Valencia Dw J d o  0.784 
29 (Newnham 1916) Wet J 2‘ 0.9 0.93 

30 Greenwich Dry J J 0.20 0.845 
31 (Newnham 1916) Wet J J 2.6 0.705 

32 Kew D n  J 
33 (Chatlield 1986) Wet .J 

J =xz test performed and nonsignificant result obtained. 
X=xa test performed and significant result obtained. 

Although not the same kind of data as the rest which 
concern us here, Weiss’ data concerning the duration of 
and intervals between storms in certain areas exhibit a 
similar probalistic behavior and were considered here 
also, and the relevant test results are included in table 1. 
It had previously been reported by the present author 
that the Markov model did not fit the data of areas I1 
and 111, whereas table 1 now indiqates otherwise. Indeed 
there .is a s igdcan t  difference between the observed and 
computed values for each of these sets of data as shown in 
Weiss’ table 2. However, the computed values for these 
sets, and the corresponding conditional probabilities, as 
shown in Weiss’ table 2, were in error, and when the 

correct values are used the test results shown here in 
table 1 are obtained. However, we should mention that 
the fit of the model is nearly significantly bad (at the 5 
percent level) for the storm durations of area I1 and 
intervals of area 111; also the fit of model 3 is actually 
significantly bad in the latter case (as there is one degree 
of freedom less for chi-squared), although the fit of model 
2 (a special case of model 3) is just not significant. 

Williams’ investigation of dry spells at Harpenden and 
Chatfield’s investigation of wet and dry spells at Kew 
(which incidentally used later data than did the investiga- 
tions of Newnham relating to Kew, 1958-65 as compared 
with 1901-10) demonstrated the successful fits of the 
models shown in table 1, but without performing goodness- 
of-fit significance tests. However, the fits were successfully 
tested, using chi-squared with 5 percent significance 
levels, by the present author. For the rest of the rows of 
table 1, wherever neither model 1 nor model 2 had been 
shown statistically, in previous published work, to fit the 
data, model 3 was fitted and the fit tested by a chi-squared 
goodness-of-fit test with 5 percent significance level. In  
some of these cases (as table 1 shows) it happens that 
model 1 or model 2 does fit the data, but this had not been 
shown in previous publications. 

Actually Cooke (1953) had previously reported the 
Moncton data as fitting the log series for the dry runs, 
and the Markov model for the wet runs. These models 
may indeed be useful approximations to  the rainfall 
behavior there, but the two fits were significantly bad 
by the chi-squared test at the 5 percent significance level, 
as indicated in table 1. 

We see that, of the 33 sets of data here considered, 
seven fitted model 1, 16 fitted model 2, and seven of the 
remaining 10 sets fitted model 3. In all, 30 of the 33 sets 
fitted model 3, or 29, if one regards the data of the area 
I11 intervals as not fitting model 3. If in fact model 3 
does apply in all these cases, then the probability of getting 
at  least three results significant at the 5 percent level is 
23.0 percent (the probability of at least four being signifi- 
cant is 8.6 percent). Thus our obtaining only three or 
four signxcant results out of 33 is quite consistent with 
the hypothesis that model 3 applies for all cases. 

Since the data for March, England, have not been 
previously published, they are given here in table 2, 
together with the computed numbers of wet runs and 
numbers of dry runs of different lengths, according to 
model 3, for the period 1887-1918 (all seasons). I t  happens 
that in the case of the dry runs, the best model 3 fit is 
obtained by fitting the particular case, model 1. 

Figures 1 and 2 also illustrate the measure of agreement 
between the data for March and the computed run dis- 
tributions according to model 3. 

4. FITTING MODEL 3 

To estimate the parameters for model 3, whereby the 
probability of a run of T days is proportional to q‘/(r+u), 
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12 2' 
13 2 
14 
15 
16 1 
17 
18 1 
19 or J 

- 
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13 16.4 29 1 
12 13.2 30 2 
12 10.6 31 ormore 0 

- 6  7.4 8 8.6 
0 7.0 Total 17 
8 5.7 
5 4.7 

17 23.0 

1100 t it TABLE 2.-Observed and computed data for March, England 

Tail of dry run 
Run Observed Computed Observed Computed distribution 

length no. wet no. wet no.dry no. dry 
(days) runs runs rum runs Run Observed 

length no.rum 

800 i, 

RUN LENGTH 1?AYS) 

FIGURE 1.-Distribution of lengths of runs of dry days a t  March 
(England) for 1887-1918. Observed data, crosses; model 3 fit, 
full line. 
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FIGURE 2.-Distribution of lengths of runs of wet days at March, 
England, for 1887-1918. Observed data, crosses; model 3 fit, 
full line. 

1) The method of minimum chi-squared was used by 
the present author, by means of repeated application of 
a simple ALGOL program on an ICL KDF9 computer, 
using an Egdon operating system. This program calcu- 
lates chi-squared at each point of a mesh of values of a 
and p for each set of data. The procedure can be repeated 
using a finer mesh in the area of the minimizing a and p 
values, for each set of data, and again if required. If ap- 
proximate a and p values give a chi-squared value 
sufficiently small to be nonsignificant, then clearly the 
exact minimizing values wil l  give a nonsignificant result. 
Each usage of the program required computer time of 
about 45-50 sec plus about 0.17 sec per a-q combination. 

2) The method of maximum likelihood here produces 
two equations, which are satisfied by the estimates of a 
and p, namely (with T as the length of a run) 

sample average, (r+a)-'=expected value of (?+a)-' 

and 

sample average, ;=expected value of r, 
it is appropriate to use either 1) the method of minimum 
chi-squared, or 2) the method of maximum likelihood. that is, respectively, 

(1 1 The two methods are asymptotically equivalent. N-'2 O,/(r+ a) =cZq./(r+ a) 
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where O,=observed number of runs of length r,  N=20, ,  
and c is the normalizing constant, such that c2pr/(r+a) = 1. 

Using & for “expected value of,” the values of & (r+a)-’ 
and &r are not readily expressible by convenient formulas , 
though they may be calculated easily and tabulated for 
different values of a and p. However, equations (1) and 
(2)  are not easy to solve, since a appears awkwardly on 
both sides of equation (l), and is needed to apply equa- 
tion (2). 

An iterative graphical method would appear to be the 
best way to obtain an approximate solution, but attempts 
by the author to do this have not been very successful. 
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